If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-24y=0
a = 2; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·2·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*2}=\frac{0}{4} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*2}=\frac{48}{4} =12 $
| 4x+2=12x-8 | | 2x+2=x+19 | | 9(b+14)=36b+16+10(24) | | 9(b+4)=36b+16+10(24) | | 7(b+4)=36b+16+10(24) | | 7(b+4)=32b+16+10(24) | | 7(b+4)=32b+15+10(24) | | 7(b+4)=32b+15+10(23) | | 7(b+4)=32b+15+10(104) | | 7(b+4)=32b+15+10 | | 7(b+4)=14b+15+10 | | 2x+4/3+1/3x=1/4x-7/3 | | 7(b+4)=14b-15+10 | | 7(b+4)=14b-8+10 | | 5(b+4)=14b-8+10 | | 5(b+4)=14b-8+56 | | 5(b+4)=7b-8+56 | | 5(b-4)=7b-8+56 | | −3/7x=9 | | 7+k/15=1 | | 2m+7(-3m-4)=86 | | x-24+x+15+x+15=180 | | 12x-29=0 | | 7x-6=3x/4 | | x=10x(2/5) | | 12x-29=247 | | 82=2(5p+6) | | 4(1+4m)+3=87 | | 4(1+4m+3=87 | | 119=7(1-2n) | | 0=9a-20/3a-4 | | 18x+75=96 |